Growth Hormone Deficiency (1 of 5)

1. Patient presents w/ signs & symptoms suggestive of growth hormone deficiency (GHD)

2. **DIAGNOSIS**
 - Is GHD confirmed?

 - No → **ALTERNATIVE DIAGNOSIS**
 - Yes → **Patient/parental education**

 Treatment
 - Growth hormone (GH) replacement therapy
 - Surgery may be required for intracranial tumor

 Follow-up & monitoring

CLINICAL PRESENTATION

- GHD is a congenital or an acquired GH axis disruption in the higher brain, hypothalamus or pituitary which results in short stature
- May occur at any age

Signs & Symptoms

- Variable & depends on the age of onset
- Noticeable slow growth/short stature (standard height deviation score usually below -2) w/ normal body proportions
- Growth failure after a period of normal growth (child w/ GHD may grow normally until about 2-3 yr old; then, signs of growth delay begin to show
- Hypoglycemia, prolonged jaundice or microphallus (for males) in neonates
- Immature face w/ prominent forehead & depressed midfacial development
- Delayed dentition
- Delayed puberty
- Increased subcutaneous fat esp in the trunk
- Excessive thirst & urination, increased urine volume
- Symptoms of a mass lesion in the hypothalamic-pituitary region (eg headaches, visual disturbances)

Not all products are available or approved for above use in all countries.
Specific prescribing information may be found in the latest MIMS.
Growth Hormone Deficiency (2 of 5)

Etiologies

- **Congenital Conditions**
 - Defective pituitary development that leads to pituitary aplasia
 - Empty sella
 - Encephalocele
 - Midline defects
 - Septo-optic dysplasia
 - Panhypopituitarism
 - Genetic abnormalities

- **Acquired Conditions**
 - Tumors of the hypothalamic-pituitary region
 - Cranial irradiation
 - Infiltrative diseases
 - Trauma
 - Hypoxic insult
 - CNS infections

- **Idiopathic**

History

- Family history of GHD
- Perinatal history (e.g., difficult labor, traumatic delivery)
- History of cranial irradiation
- History of head trauma
- Growth chart & history of slow or no growth
- Symptoms of GHD in neonates & children

Physical Exam

- Height & wt evaluation
 - Plot wt & height measurements on growth charts which will graphically depict changes in growth & growth velocity
- Short stature may suggest GH deficiency & immediate investigation should be conducted if any of the following criteria based on the American Association of Clinical Endocrinologists (AACE) are present:
 - Severe short stature (defined as height <2.5 SD below population mean)
 - Height <2 SD below population mean or 1-yr height velocity >1 SD below mean for chronological age or (in child age >2 yr), a 1-yr decrease of >0.5 SD in height
 - In the absence of short stature, a 1-yr height velocity >2 SD below the mean or a 2-yr height velocity >1.5 SD below the mean (esp GH manifesting during infancy or in organic acquired GHD)
 - Height >1.5 SD below midparental height (average of father’s & mother’s)
 - Signs indicative of an intracranial lesion
 - Signs of multiple pituitary hormone deficiencies (MPHD)
 - Neonatal signs & symptoms of GHD

- Other manifestations of GHD in children
 - Increased subcutaneous fat, esp around the trunk
 - Immature facie, wrinkle forehead & depressed midfacial development
 - Delayed dentition
 - Delayed average age of pubertal onset
 - In males, the phallus may be small

Lab Tests

- **Serum GH Level**
 - In newborns, serum GH level <20 ng/mL is highly suggestive of GHD
 - GH level measured in neonates w/ hypoglycemia but no metabolic disorder
 - After the newborn period, random serum GH levels are not reliable indicators of GHD due to the pulsatile nature of GH secretion

- **GH Stimulation (Provocative) Tests**
 - At least 2 provocative tests are ideal to ascertain the GHD diagnosis because of the high frequency of false-negative results for each single test
 - Provocative tests in children w/ peak GH concentration <10 mcg/L supports GHD diagnosis:
 - Insulin tolerance test (ITT)
 - GH level <5.1 mcg/L indicative of GHD
 - GH level <4.1 mcg/L indicates GHD in a GH-RH-arginine test
 - Clonidine
 - Levodopa
 - Glucagon w/ or w/o beta-blockers
Lab Tests (Cont’d)

Insulin-like Growth Factor 1 (IGF-1) or Somatomedin Test & IGF-binding Protein 3 (IGFBP-3) Test
- Produced when the liver & other tissues are stimulated by GH
- Values >2 SD below the mean for IGF-1 or IGFBP-3 strongly suggest an abnormality in the GH axis, if other causes of low IGF have been excluded
- However, normal values for IGF-1 & IGFBP-3 can be found in children w/ GHD

Other Tests
- Lipid profile
 - Patients w/ GHD may have increased total cholesterol, low-density lipoprotein-cholesterol (LDL-C), apolipoprotein B & triglyceride (TG) levels & decreased high-density lipoprotein-cholesterol (HDL-C)
- Thyroxine & thyroid-stimulating hormone (TSH)
 - To rule out hypothyroidism
- Evaluate for possible causes of GHD: Congenital, genetic or acquired causes
- Karyotype
 - Used to evaluate the presence of genetic syndromes
- Increased type-1 plasminogen activator inhibitor (PAI-1) activity
- Increased fibrinogen levels

Imaging Studies
X-ray
- Assesses the bone age in children
- Reveals delayed bone age in children w/ GHD
- Bone age is estimated from a radiograph of the:
 - Left wrist & hand for children 1 yr of age or older
 - Knee for infants <1 yr old
- X-ray of the head may show skull problems
Bone Density Scan
- Reduced bone mineral density indicates an increased risk of osteoporotic fractures
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) of the CNS
- Performed to define the anatomy of the hypothalamic-pituitary region & to identify intracranial tumors, optic nerve hypoplasia, septo-optic dysplasia or other structural or developmental anomalies

PATIENT/PARENTAL EDUCATION
- Educate parents & their affected children about GHD
- Psychological counselling may help children w/ low self-esteem that may be related to GHD
- Patients & their parents must learn the technique of subcutaneous GH injection

TREATMENT

GH Replacement Therapy
- GH replacement therapy is best accomplished under the direct supervision of a clinical endocrinologist
- Goals of pharmacotherapy
 - To restore normal GH levels & to reduce morbidity
 - To enable short children to achieve normal height w/ early improvement of the psychosocial problems related to short stature

Somatropin or GH
- Synthetic polypeptide human GH of recombinant DNA (rDNA) origin
- Indicated for children w/ GHD, Turner syndrome & Prader-Willi syndrome
- GH trial therapy also recommended for children w/ otherwise unexplained short stature who pass GH stimulation tests, but who meet most of the following criteria:
 - Height >2.25 SD below the mean for age or >2 SD below the midparental height percentile
 - Growth velocity <25th percentile for bone age
 - Bone age >2 SD below the mean for age
 - Low serum IGF-1 & IGFBP-3
 - Other clinical features suggestive of GHD

Not all products are available or approved for above use in all countries.
Specific prescribing information may be found in the latest MIMS.
Growth Hormone Deficiency (4 of 5)

B. TREATMENT (CONT’D)

Somatropin or GH (Cont’d)
- **Effects:**
 - Induce normal stature growth
 - Correction of hypoglycemia
- **Target for treatment:**
 - Satisfactory response is defined as an increase of height velocity of at least 2-3 cm/yr above pretreatment velocity
 - Achieve acceptable adult height
- **Replacement is continued until attainment of bone age of 14 yr (girls) & 16 yr (boys)**

Surgery
- Surgery may be indicated for congenital anomalies & pituitary tumors

C. FOLLOW-UP & MONITORING

Prescribed End Points
- IGF-I in normal range for age & sex
 - Increase dose if IGF-I is low & decrease dose if IGF-I is above normal range
- Improvement in blood lipid profile, body composition (change in lipolysis & increase in bone density) & waist-hip ratio
- Increased muscle strength & exercise performance
- Reduction in CV risk factors

Patient Monitoring
- Close follow-up care w/ an endocrinologist is recommended to monitor the child’s growth & to adjust the dose of GH therapy
- Initial follow-up should be every mth; thereafter, visits may be less frequent but should be at least 2x/yr
- Children should be evaluated every 3-6 mth, w/ increases in height & height velocity as the most important indicators of GH therapy response
- Monitor thyroid function every 6 mth
- Monitor patients for hyperglycemia because GH may reduce insulin sensitivity; patients w/ diabetes mellitus (DM) may need to adjust their insulin during treatment
- Funduscopic examination is recommended at the start of therapy & periodically during the course of treatment
- No consensus exists concerning when to cease growth hormone treatment
 - GH should be continued until growth ceases (ie final height or epiphyseal closure has been documented), at which point the GH axis should be retested w/ stimulation tests
 - GH treatment is meant to be a replacement therapy & can only be expected to make short children grow at a normal growth rate
 - Most children treated w/ GH replacement reach a normal adult height
 - Child’s growth usually increases most during the 1st yr, w/ an average increase of 8-10 cm/yr
 - Growth rate slows down over the next several yr

Not all products are available or approved for above use in all countries. Specific prescribing information may be found in the latest MIMS.
Dosage Guidelines

GROWTH HORMONE

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatropin (rDNA origin)</td>
<td>0.5-0.7 IU/kg/wk SC or 12-20 IU/m²/wk SC divided into daily doses or divided into 6-7 doses or 2.1-3 IU/m² BSA/day SC or 0.025-0.035 mg/kg/day SC or 25-35 mcg/kg/day SC or 0.7-1 mg/m² BSA/day SC</td>
<td>Administration • Administer in the evening to mimic nocturnal GH secretion, preferably in abdominal area • Rotate inj sites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adverse Reactions • Usually dose-dependent & resolve w/ dose reduction or after 1-2 mth of treatment • Antibodies to growth hormone • Intracranial hypertension & slipped capital femoral epiphysis (more common in children) • Hyperinsulinemia causing hypoglycemia • Inj site reactions (eg swelling, pain, erythema, itching, bruising & lipoatrophy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special Precautions • Contraindicated in active malignancy, carpal tunnel syndrome, benign intracranial hypertension, proliferative or pre-proliferative diabetic retinopathy, patients w/ closed epiphyses, intracranial lesion, pseudotumor cerebri & hypersensitivity to active ingredients • Monitor patients w/ GHD secondary to an intracranial lesion should be examined frequently for progression or recurrence of the underlying disease process • Observe for evidence of glucose intolerance • Patients w/ coexisting ACTH deficiency should have their glucocorticoid replacement dose carefully adjusted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.045-0.05 mg/kg/day SC or 1.4 mg/m² BSA/day SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 mg/m² BSA/day SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chronic renal insufficiency: 50 mcg/kg/day SC or 0.045-0.05 mg/kg/day SC or 1.4 mg/m² BSA/day SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turners syndrome: 1 IU/kg/wk divided into 6-7 doses or 30 IU/m² BSA/wk divided into 6-7 doses or 0.045-0.05 mg/kg/day SC or 1.4 mg/m² BSA/day SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prader-Willi syndrome: 0.035 mg/kg/day SC or 25 mg/m² BSA/day SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max dose for Prader-Willi syndrome: 2.7 mg/day</td>
<td></td>
</tr>
</tbody>
</table>

All dosage recommendations are for children w/ normal renal & hepatic function unless otherwise stated.

Not all products are available or approved for above use in all countries. Products listed above may not be mentioned in the disease management chart but have been placed here based on indications listed in regional manufacturers’ product information. Specific prescribing information may be found in the latest MIMS.

Please see the end of this section for reference list.
Growth Hormone Deficiency

