Brilinta倍林達

Brilinta Drug Interactions

Manufacturer:

AstraZeneca

Distributor:

Zuellig
/
Four Star
Full Prescribing Info
Drug Interactions
Ticagrelor is primarily a CYP3A4 substrate and a mild inhibitor of CYP3A4. Ticagrelor is also a P-glycoprotein (P-gp) substrate and a weak P-gp inhibitor and may increase the exposure of P-gp substrates.
Effects of other medicinal products on Ticagrelor: Medicinal products metabolised by CYP3A4: CYP3A4 inhibitors: Strong CYP3A4 inhibitors: Co-administration of ketoconazole with ticagrelor increased the ticagrelor Cmax and AUC equal to 2.4-fold and 7.3-fold, respectively. The Cmax and AUC of the active metabolite were reduced by 89% and 56%, respectively. Other strong inhibitors of CYP3A4 (clarithromycin, nefazodone, ritonavir, and atazanavir) would be expected to have similar effects and therefore concomitant use of strong CYP3A4 inhibitors with ticagrelor is contraindicated (see Contraindications).
Moderate CYP3A4 inhibitors: Co-administration of diltiazem with ticagrelor increased the ticagrelor Cmax by 69% and AUC to 2.7 fold and decreased the active metabolite Cmax by 38% and AUC was unchanged. There was no effect of ticagrelor on diltiazem plasma levels. Other moderate CYP3A4 inhibitors (e.g. amprenavir, aprepitant, erythromycin and fluconazole) would be expected to have a similar effect and can as well be co-administered with ticagrelor.
CYP3A inducers: Co-administration of rifampicin with ticagrelor decreased ticagrelor Cmax and AUC by 73% and 86%, respectively. The Cmax of the active metabolite was unchanged and the AUC was decreased by 46%, respectively. Other CYP3A inducers (e.g. phenytoin, carbamazepine and phenobarbital) would be expected to decrease the exposure to ticagrelor as well. Co-administration of ticagrelor with potent CYP3A inducers may decrease exposure and efficacy of ticagrelor; therefore, their concomitant use with ticagrelor is discouraged.
Cyclosporine (P-gp and CYP3A inhibitor): Co-administration of cyclosporine (600 mg) with ticagrelor increased ticagrelor Cmax and AUC equal to 2.3-fold and 2.8-fold, respectively. The AUC of the active metabolite was increased by 32% and Cmax was decreased by 15% in the presence of cyclosporine.
No data are available on concomitant use of ticagrelor with other active substances that also are potent P-glycoprotein (P-gp) inhibitors and moderate CYP3A4 inhibitors (e.g. verapamil, quinidine) that also may increase ticagrelor exposure. If the association cannot be avoided, their concomitant use should be made with caution.
Others: Clinical pharmacology interaction studies showed that co-administration of ticagrelor with heparin, enoxaparin and ASA or desmopressin did not have any effect on the pharmacokinetics of ticagrelor or the active metabolite or on ADP-induced platelet aggregation compared with ticagrelor alone. If clinically indicated, medicinal products that alter haemostasis should be used with caution in combination with ticagrelor.
A 2-fold increase of ticagrelor exposure was observed after daily consumption of large quantities of grapefruit juice (3x200ml). This magnitude of increased exposure is not expected to be clinically relevant to most patients.
Effects of ticagrelor on other medicinal products: Medicinal products metabolised by CYP3A4: Simvastatin: Co-administration of ticagrelor with simvastatin increased simvastatin Cmax by 81% and AUC by 56% and increased simvastatin acid Cmax by 64% and AUC by 52% with some individual increases equal to 2 to 3 fold. Co-administration of ticagrelor with doses of simvastatin exceeding 40 mg daily could cause adverse effects of simvastatin and should be weighed against potential benefits. There was no effect of simvastatin on ticagrelor plasma levels. Ticagrelor may have similar effect on lovastatin. The concomitant use of ticagrelor with doses of simvastatin or lovastatin greater than 40 mg is not recommended.
Atorvastatin: Co-administration of atorvastatin and ticagrelor increased atorvastatin acid Cmax by 23% and AUC by 36%. Similar increases in AUC and Cmax were observed for all atorvastatin acid metabolites. These increases are not considered clinically significant.
A similar effect on other statins metabolised by CYP3A4 cannot be excluded.
Patients in PLATO receiving ticagrelor took a variety of statins, with no concern of an association with statin safety among the 93% of the PLATO cohort taking these medicinal products.
Ticagrelor is a mild CYP3A4 inhibitor. Co-administration of ticagrelor and CYP3A4 substrates with narrow therapeutic indices (i.e, cisapride or ergot alkaloids) is not recommended, as ticagrelor may increase the exposure to these medicinal products.
P-gp substrates (including digoxin, cyclosporine): Concomitant administration of ticagrelor increased the digoxin Cmax by 75% and AUC by 28%. The mean trough digoxin levels were increased about 30% with ticagrelor co-administration with some individual maximum increases to 2-fold. In the presence of digoxin, the Cmax and AUC of ticagrelor and its active metabolite were not affected. Therefore, appropriate clinical and/or laboratory monitoring is recommended when giving narrow therapeutic index P-gp dependent medicinal products like digoxin concomitantly with ticagrelor.
There was no effect of ticagrelor on cyclosporine blood levels. Effect of ticagrelor on other P-gp substrates has not been studied.
Medicinal products metabolised by CYP2C9: Co-administration of ticagrelor with tolbutamide resulted in no change in the plasma levels of either medicinal product, which suggests that ticagrelor is not a CYP2C9 inhibitor and unlikely to alter the CYP2C9 mediated metabolism of medicinal products like warfarin and tolbutamide.
Oral contraceptives: Co-administration of ticagrelor and levonorgestrel and ethinyl estradiol increased ethinyl estradiol exposure approximately 20% but did not alter the pharmacokinetics of levonorgestrel. No clinically relevant effect on oral contraceptive efficacy is expected when levonorgestrel and ethinyl estradiol are co-administered with ticagrelor.
Medicinal products known to induce bradycardia: Due to observations of mostly asymptomatic ventricular pauses and bradycardia, caution should be exercised when administering ticagrelor concomitantly with medicinal products known to induce bradycardia (see Precautions). However no evidence of clinically significant adverse reactions was observed in the PLATO trial after concomitant administration with one or more medicinal products known to induce bradycardia (e.g. 96% beta blockers, 33% calcium channel blockers diltiazem and verapamil, and 4% digoxin).
Other concomitant therapy: In clinical studies, ticagrelor was commonly administered with ASA, proton pump inhibitors, statins, beta-blockers, angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers as needed for concomitant conditions for long-term and also heparin, low molecular weight heparin and intravenous GpIIb/IIIa inhibitors for short durations (see Pharmacology: Pharmacodynamics under Actions). No evidence of clinically significant adverse interactions with these medicinal products was observed.
Co-administration of ticagrelor with heparin, enoxaparin or desmopressin had no effect on activated partial thromboplastin time (aPTT), activated coagulation time (ACT) or factor Xa assays. However, due to potential pharmacodynamic interactions, caution should be exercised with the concomitant administration of ticagrelor with medicinal products known to alter haemostasis.
Due to reports of cutaneous bleeding abnormalities with SSRIs (e.g. paroxetine, sertraline and citalopram), caution is advised when administering SSRIs with Brilinta as this may increase the risk of bleeding.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Sign up for free
Already a member? Sign in