Ondansetron Fresenius

Ondansetron Fresenius Mechanism of Action



Fresenius Kabi


The Glory Medicina
Full Prescribing Info
ATC code: A04 Antiemetics and antinauseants. ATC group: A04AAO 1 Serotonin (5HT3) antagonist.
Pharmacology: Pharmacodynamics: Mechanism of Action: Ondansetron is a potent, highly selective 5HT3 receptor-antagonist. Its precise mode of action in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT3 receptors. Ondansetron blocks the initiation of this reflex. Activation of vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT3 receptors on neurons located both in the peripheral and central nervous system.
The mechanisms of action in post-operative nausea and vomiting are not known but there may be common pathways with cytotoxic induced nausea and vomiting.
Ondansetron does not alter plasma prolactin concentrations.
The role of ondansetron in opiate-induced emesis is not yet established.
QT Prolongation: The effect of ondansetron on the QTc interval was evaluated in a double blind, randomised, placebo and positive (moxifloxacin) controlled, crossover study in 58 healthy adult men and women. Ondansetron doses included 8 mg and 32 mg infused intravenously over 15 minutes. At the highest tested dose of 32 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline-correction was 19.6 (21.5) msec. At the lower tested dose of 8 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline-correction was 5.8 (7.8) msec. In this study, there were no QTcF measurements greater than 480 msec and no QTcF prolongation was greater than 60 msec. No significant changes were seen in the measured electrocardiographic PR or QRS intervals.
Paediatric Population: CINV: The efficacy of Ondansetron in the control of emesis and nausea induced by cancer chemotherapy was assessed in a double-blind randomised trial in 415 patients aged 1 to 18 years (S3AB3006). On the days of chemotherapy, patients received either ondansetron 5 mg/m2 intravenous and ondansetron 4 mg orally after 8 to 12 hours or ondansetron 0.45 mg/Kg intravenous and placebo after 8 to 12 hours. Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. Complete control of emesis on worst day of chemotherapy was 49 % (5mg/m2 intravenous and ondansetron 4 mg orally) and 41 % (0.45 mg/Kg intravenous and placebo orally). Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.
A double-blind randomised placebo-controlled trial (S3AB4003) in 438 patients aged 1 to 17 years demonstrated complete control of emesis on worst day of chemotherapy in: 73% of patients when ondansetron was administered intravenously at a dose of 5mg/m2 intravenous together with 2-4 mg dexamethasone orally.
71% of the patients when ondansetron was administered as a syrup at a dose of 8 mg together with 2 to 4 mg dexamethasone orally on the days of chemotherapy.
Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 2 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.
The efficacy of ondansetron in 75 children aged 6 to 48 months was investigated in an open-label, non-comparative, single-arm study (S3A40320). All children receive three 0.15 mg/Kg doses of intravenous ondansetron, administered at 30 minutes before the start of chemotherapy and then at 4 and 8 hours after the first dose. Complete control of emesis was achieved in 56% of patients.
Another open-label, non-operative, single-arm study (S3A239) investigated the efficacy of one intravenous dose of 0.15 mg/Kg ondansetron followed by two ondansetron doses of 4mg for children aged < 12 years and 8 mg for children aged ≥12 years (total no. of children n = 28). Complete control of emesis was achieved in 42% of patients.
PONV: The efficacy of a single dose of Ondansetron in the prevention of post-operative nausea and vomiting was investigated in a randomised, double-blind, placebo-controlled study in 670 children aged 1 to 24 months (post-conceptual age ≥44 weeks, weight ≥3 Kg). Included subjects were scheduled to undergo effective surgery under general anaesthesia and had an ASA status ≤III. A single dose of ondansetron 0.1 mg/Kg was administered within five minutes following induction of anaesthesia. The proportion of subjects who experienced at least one emetic episode during the 24-hour assessment period (ITT) was greater for patients on placebo than those receiving ondansetron (28% vs. 11%, p<0.0001).
Four double-blind, placebo-controlled studies have been performed in 1469 male and female patients (2 to 12 years of age) undergoing general anaesthesia. Patients were randomised to either single intravenous doses of ondansetron (0.1 mg/kg for paediatric patients weighing 40 kg or less, 4 mg for paediatric patients weighing more than 40 kg; number of patients = 735) or placebo (number of patients = 734). Study drug was administered over at least 30 seconds, immediately prior to or following anaesthesia induction. Ondansetron was significantly more effective than placebo in preventing nausea and vomiting. The results of these studies are summarised in Table 1. (See Table 1.)

Click on icon to see table/diagram/image

Pharmacokinetics: Absorption: Following oral administration, ondansetron is passively and completely absorbed from the gastrointestinal tract and undergoes first pass metabolism. Peak plasma concentrations of about 30ng/ml are attained approximately 1.5 hours after an 8 mg dose. For doses above 8 mg the increase in ondansetron systemic exposure with dose is greater than proportional; this may reflect some reduction in first pass metabolism at higher oral doses. Bioavailability, following oral administration, is slightly enhanced by the presence of food but unaffected by antacids.
Following administration of ondansetron suppository, plasma ondansetron concentrations become detectable between 15 and 60 minutes after dosing. Concentrations rise in an especially linear fashion, until peak concentrations of 20-30 ng/ml are attained, typically 6 hours after dosing. Plasma concentrations then fall, but at a slower rate than observed following oral dosing due to continued absorption of ondansetron.
Studies in healthy elderly volunteers have shown slight, but clinically insignificant, age-related increases in both oral bioavailability (65%) and half-life (five hours) of ondansetron.
A 4mg intravenous infusion of ondansetron given over 5 minutes results in peak plasma concentrations of about 65 ng/ml. Following intramuscular administration of ondansetron, peak plasma concentrations of about 25 ng/ml are attained within 10 minutes of injection.
Distribution: The disposition of ondansetron following oral, intramuscular (IM) and intravenous (IV) dosing is similar with a terminal half-life of about 3 hours and steady state volume of distribution of about 140 L. Equivalent systemic exposure is achieved after intramuscular and intravenous administration of ondansetron.
Ondansetron is not highly protein bound (70-76%).
The absolute bioavailability of ondansetron from the suppository is approximately 60% and is not affected by gender.
Biotransformation: Ondansetron is cleared from the systemic circulation predominantly by hepatic metabolism through multiple enzymatic pathways. The absence of the enzyme CYP2D6 (the debrisoquine polymorphism) has no effect on ondansetron's pharmacokinetics.
Elimination: Less than 5% of the absorbed dose is excreted unchanged in the urine. Terminal half-life is about 3 hours.
The pharmacokinetic properties of ondansetron are unchanged on repeat dosing.
The half-life of the elimination phase following suppository administration is determined by the rate of ondansetron absorption, not systemic clearance and is approximately 6 hours. Females show a small, clinically insignificant, increase in half-life in comparison with males.
Special Patient Populations: Gender: Gender differences were shown in the disposition of ondansetron, with females having a greater rate and extent of absorption following an oral dose and reduced systemic clearance and volume of distribution (adjusted for weight).
Children and Adolescents (aged 1 month to 17 years): In paediatric patients aged 1 to 4 months (n=19) undergoing surgery, weight normalised clearance was approximately 30% slower than in patients aged 5 to 24 months (n=22) but comparable to the patients aged 3 to 12 years. The half-life in the patient population aged 1 to 4 month was reported to average 6.7 hours compared to 2.9 hours for patients in the 5 to 24 month and 3 to 12 year age range. The differences in pharmacokinetic parameters in the 1 to 4 month patient population can be explained in part by the higher percentage of total body water in neonates and infants and a higher volume of distribution for water soluble drugs like ondansetron.
In paediatric patients aged 3 to 12 years undergoing elective surgery with general anaesthesia, the absolute values for both the clearance and volume of distribution of ondansetron were reduced in comparison to values with adult patients. Both parameters increased in a linear fashion with weight and by 12 years of age, the values were approaching those of young adults. When clearance and volume of distribution values were normalised by body weight, the values for these parameters were similar between the different age group populations. Use of weight-based dosing compensates for age-related changes and is effective in normalising systemic exposure in paediatric patients.
Population pharmacokinetic analysis was performed on 428 subjects (cancer patients, surgery patients and healthy volunteers) aged 1 month to 44 years following intravenous administration of ondansetron. Based on this analysis, systemic exposure (AUC) of ondansetron following oral or IV dosing in children and adolescents was comparable to adults, with the exception of infants aged 1 to 4 months. Volume was related to age and was lower in adults than in infants and children. Clearance was related to weight but not to age with the exception of infants aged 1 to 4 months. It is difficult to conclude whether there was an additional reduction in clearance related to age in infants 1 to 4 months or simply inherent variability due to the low number of subjects studied in this age group. Since patients less than 6 months of age will only receive a single dose in PONV a decreased clearance is not likely to be clinically relevant.
Elderly: Early phase I studies in healthy elderly volunteers have showed a slight age-related decrease in clearance, and an increase in half-life of ondansetron. However, wide inter-subject variability resulted in considerable overlap in pharmacokinetic parameters between young (< 65 years of age) and elderly subjects (≥ 65 years of age) and there were no overall differences in safety or efficacy observed between young and elderly cancer patients enrolled in CINV clinical trials to support a different dosing recommendation for the elderly.
Based on more recent ondansetron plasma concentrations and exposure-response modelling, a greater effect on QTcF is predicted in patients ≥ 75 years of age compared to young adults. Specific dosing information is provided for patients over 65 years of age and over 75 years of age for IV dosing (see Dosage & Administration).
Renal impairment: In patients with renal impairment (creatinine clearance 15-60 ml/min), both systemic clearance and volume of distribution are reduced following IV administration of ondansetron, resulting in a slight, but clinically insignificant, increase in elimination half-life (5.4h). A study in patients with severe renal impairment who required regular haemodialysis (studied between dialyses) showed ondansetron's pharmacokinetics to be essentially unchanged following intravenous administration.
Hepatic impairment: Following oral, intravenous or intramuscular dosing in patients with severe hepatic impairment, ondansetron's systemic clearance is markedly reduced with prolonged elimination half-lives (15-32 hours) and an oral bioavailability approaching 100% due to reduced pre-systemic metabolism. The pharmacokinetics of ondansetron following administration as a suppository have not been evaluated in patients with hepatic impairment.
Toxicology: Preclinical safety data: Preclinical data revealed no special hazard for humans based on conventional studies of safety pharmacology, repeated-dose toxicity, genotoxicity and carcinogenic potential.
Ondansetron and its metabolites accumulate in the milk of rats at a milk:plasma ratio of 5.2:1.
A study in cloned human cardiac ion channels has shown ondansetron has the potential to affect cardiac repolarisation via blockade of HERG potassium channels.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Sign up for free
Already a member? Sign in