Ondansetron Fresenius

Ondansetron Fresenius

ondansetron

Manufacturer:

Fresenius Kabi

Distributor:

Zuellig
/
The Glory Medicina
Full Prescribing Info
Contents
Ondansetron.
Description
Each ml of solution for injection or infusion contains 2mg ondansetron (as ondansetron hydrochloride dihydrate).
Each ampoule with 2ml contains 4mg ondansetron (as ondansetron hydrochloride dihydrate).
Excipients/Inactive Ingredients: Citric acid anhydrous, Sodium citrate, Sodium chloride, Water for injections.
Action
ATC code: A04 Antiemetics and antinauseants. ATC group: A04AAO 1 Serotonin (5HT3) antagonist.
Pharmacology: Pharmacodynamics: Mechanism of Action: Ondansetron is a potent, highly selective 5HT3 receptor-antagonist. Its precise mode of action in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT3 receptors. Ondansetron blocks the initiation of this reflex. Activation of vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT3 receptors on neurons located both in the peripheral and central nervous system.
The mechanisms of action in post-operative nausea and vomiting are not known but there may be common pathways with cytotoxic induced nausea and vomiting.
Ondansetron does not alter plasma prolactin concentrations.
The role of ondansetron in opiate-induced emesis is not yet established.
QT Prolongation: The effect of ondansetron on the QTc interval was evaluated in a double blind, randomised, placebo and positive (moxifloxacin) controlled, crossover study in 58 healthy adult men and women. Ondansetron doses included 8 mg and 32 mg infused intravenously over 15 minutes. At the highest tested dose of 32 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline-correction was 19.6 (21.5) msec. At the lower tested dose of 8 mg, the maximum mean (upper limit of 90% CI) difference in QTcF from placebo after baseline-correction was 5.8 (7.8) msec. In this study, there were no QTcF measurements greater than 480 msec and no QTcF prolongation was greater than 60 msec. No significant changes were seen in the measured electrocardiographic PR or QRS intervals.
Paediatric Population: CINV: The efficacy of Ondansetron in the control of emesis and nausea induced by cancer chemotherapy was assessed in a double-blind randomised trial in 415 patients aged 1 to 18 years (S3AB3006). On the days of chemotherapy, patients received either ondansetron 5 mg/m2 intravenous and ondansetron 4 mg orally after 8 to 12 hours or ondansetron 0.45 mg/Kg intravenous and placebo after 8 to 12 hours. Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. Complete control of emesis on worst day of chemotherapy was 49 % (5mg/m2 intravenous and ondansetron 4 mg orally) and 41 % (0.45 mg/Kg intravenous and placebo orally). Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 3 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.
A double-blind randomised placebo-controlled trial (S3AB4003) in 438 patients aged 1 to 17 years demonstrated complete control of emesis on worst day of chemotherapy in: 73% of patients when ondansetron was administered intravenously at a dose of 5mg/m2 intravenous together with 2-4 mg dexamethasone orally.
71% of the patients when ondansetron was administered as a syrup at a dose of 8 mg together with 2 to 4 mg dexamethasone orally on the days of chemotherapy.
Post-chemotherapy both groups received 4 mg ondansetron syrup twice daily for 2 days. There was no difference in the overall incidence or nature of adverse events between the two treatment groups.
The efficacy of ondansetron in 75 children aged 6 to 48 months was investigated in an open-label, non-comparative, single-arm study (S3A40320). All children receive three 0.15 mg/Kg doses of intravenous ondansetron, administered at 30 minutes before the start of chemotherapy and then at 4 and 8 hours after the first dose. Complete control of emesis was achieved in 56% of patients.
Another open-label, non-operative, single-arm study (S3A239) investigated the efficacy of one intravenous dose of 0.15 mg/Kg ondansetron followed by two ondansetron doses of 4mg for children aged < 12 years and 8 mg for children aged ≥12 years (total no. of children n = 28). Complete control of emesis was achieved in 42% of patients.
PONV: The efficacy of a single dose of Ondansetron in the prevention of post-operative nausea and vomiting was investigated in a randomised, double-blind, placebo-controlled study in 670 children aged 1 to 24 months (post-conceptual age ≥44 weeks, weight ≥3 Kg). Included subjects were scheduled to undergo effective surgery under general anaesthesia and had an ASA status ≤III. A single dose of ondansetron 0.1 mg/Kg was administered within five minutes following induction of anaesthesia. The proportion of subjects who experienced at least one emetic episode during the 24-hour assessment period (ITT) was greater for patients on placebo than those receiving ondansetron (28% vs. 11%, p<0.0001).
Four double-blind, placebo-controlled studies have been performed in 1469 male and female patients (2 to 12 years of age) undergoing general anaesthesia. Patients were randomised to either single intravenous doses of ondansetron (0.1 mg/kg for paediatric patients weighing 40 kg or less, 4 mg for paediatric patients weighing more than 40 kg; number of patients = 735) or placebo (number of patients = 734). Study drug was administered over at least 30 seconds, immediately prior to or following anaesthesia induction. Ondansetron was significantly more effective than placebo in preventing nausea and vomiting. The results of these studies are summarised in Table 1. (See Table 1.)

Click on icon to see table/diagram/image

Pharmacokinetics: Absorption: Following oral administration, ondansetron is passively and completely absorbed from the gastrointestinal tract and undergoes first pass metabolism. Peak plasma concentrations of about 30ng/ml are attained approximately 1.5 hours after an 8 mg dose. For doses above 8 mg the increase in ondansetron systemic exposure with dose is greater than proportional; this may reflect some reduction in first pass metabolism at higher oral doses. Bioavailability, following oral administration, is slightly enhanced by the presence of food but unaffected by antacids.
Following administration of ondansetron suppository, plasma ondansetron concentrations become detectable between 15 and 60 minutes after dosing. Concentrations rise in an especially linear fashion, until peak concentrations of 20-30 ng/ml are attained, typically 6 hours after dosing. Plasma concentrations then fall, but at a slower rate than observed following oral dosing due to continued absorption of ondansetron.
Studies in healthy elderly volunteers have shown slight, but clinically insignificant, age-related increases in both oral bioavailability (65%) and half-life (five hours) of ondansetron.
A 4mg intravenous infusion of ondansetron given over 5 minutes results in peak plasma concentrations of about 65 ng/ml. Following intramuscular administration of ondansetron, peak plasma concentrations of about 25 ng/ml are attained within 10 minutes of injection.
Distribution: The disposition of ondansetron following oral, intramuscular (IM) and intravenous (IV) dosing is similar with a terminal half-life of about 3 hours and steady state volume of distribution of about 140 L. Equivalent systemic exposure is achieved after intramuscular and intravenous administration of ondansetron.
Ondansetron is not highly protein bound (70-76%).
The absolute bioavailability of ondansetron from the suppository is approximately 60% and is not affected by gender.
Biotransformation: Ondansetron is cleared from the systemic circulation predominantly by hepatic metabolism through multiple enzymatic pathways. The absence of the enzyme CYP2D6 (the debrisoquine polymorphism) has no effect on ondansetron's pharmacokinetics.
Elimination: Less than 5% of the absorbed dose is excreted unchanged in the urine. Terminal half-life is about 3 hours.
The pharmacokinetic properties of ondansetron are unchanged on repeat dosing.
The half-life of the elimination phase following suppository administration is determined by the rate of ondansetron absorption, not systemic clearance and is approximately 6 hours. Females show a small, clinically insignificant, increase in half-life in comparison with males.
Special Patient Populations: Gender: Gender differences were shown in the disposition of ondansetron, with females having a greater rate and extent of absorption following an oral dose and reduced systemic clearance and volume of distribution (adjusted for weight).
Children and Adolescents (aged 1 month to 17 years): In paediatric patients aged 1 to 4 months (n=19) undergoing surgery, weight normalised clearance was approximately 30% slower than in patients aged 5 to 24 months (n=22) but comparable to the patients aged 3 to 12 years. The half-life in the patient population aged 1 to 4 month was reported to average 6.7 hours compared to 2.9 hours for patients in the 5 to 24 month and 3 to 12 year age range. The differences in pharmacokinetic parameters in the 1 to 4 month patient population can be explained in part by the higher percentage of total body water in neonates and infants and a higher volume of distribution for water soluble drugs like ondansetron.
In paediatric patients aged 3 to 12 years undergoing elective surgery with general anaesthesia, the absolute values for both the clearance and volume of distribution of ondansetron were reduced in comparison to values with adult patients. Both parameters increased in a linear fashion with weight and by 12 years of age, the values were approaching those of young adults. When clearance and volume of distribution values were normalised by body weight, the values for these parameters were similar between the different age group populations. Use of weight-based dosing compensates for age-related changes and is effective in normalising systemic exposure in paediatric patients.
Population pharmacokinetic analysis was performed on 428 subjects (cancer patients, surgery patients and healthy volunteers) aged 1 month to 44 years following intravenous administration of ondansetron. Based on this analysis, systemic exposure (AUC) of ondansetron following oral or IV dosing in children and adolescents was comparable to adults, with the exception of infants aged 1 to 4 months. Volume was related to age and was lower in adults than in infants and children. Clearance was related to weight but not to age with the exception of infants aged 1 to 4 months. It is difficult to conclude whether there was an additional reduction in clearance related to age in infants 1 to 4 months or simply inherent variability due to the low number of subjects studied in this age group. Since patients less than 6 months of age will only receive a single dose in PONV a decreased clearance is not likely to be clinically relevant.
Elderly: Early phase I studies in healthy elderly volunteers have showed a slight age-related decrease in clearance, and an increase in half-life of ondansetron. However, wide inter-subject variability resulted in considerable overlap in pharmacokinetic parameters between young (< 65 years of age) and elderly subjects (≥ 65 years of age) and there were no overall differences in safety or efficacy observed between young and elderly cancer patients enrolled in CINV clinical trials to support a different dosing recommendation for the elderly.
Based on more recent ondansetron plasma concentrations and exposure-response modelling, a greater effect on QTcF is predicted in patients ≥ 75 years of age compared to young adults. Specific dosing information is provided for patients over 65 years of age and over 75 years of age for IV dosing (see Dosage & Administration).
Renal impairment: In patients with renal impairment (creatinine clearance 15-60 ml/min), both systemic clearance and volume of distribution are reduced following IV administration of ondansetron, resulting in a slight, but clinically insignificant, increase in elimination half-life (5.4h). A study in patients with severe renal impairment who required regular haemodialysis (studied between dialyses) showed ondansetron's pharmacokinetics to be essentially unchanged following intravenous administration.
Hepatic impairment: Following oral, intravenous or intramuscular dosing in patients with severe hepatic impairment, ondansetron's systemic clearance is markedly reduced with prolonged elimination half-lives (15-32 hours) and an oral bioavailability approaching 100% due to reduced pre-systemic metabolism. The pharmacokinetics of ondansetron following administration as a suppository have not been evaluated in patients with hepatic impairment.
Toxicology: Preclinical safety data: Preclinical data revealed no special hazard for humans based on conventional studies of safety pharmacology, repeated-dose toxicity, genotoxicity and carcinogenic potential.
Ondansetron and its metabolites accumulate in the milk of rats at a milk:plasma ratio of 5.2:1.
A study in cloned human cardiac ion channels has shown ondansetron has the potential to affect cardiac repolarisation via blockade of HERG potassium channels.
Indications/Uses
Adults: Management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy.
Prevention and treatment of post-operative nausea and vomiting (PONV).
Paediatric Population: Management of chemotherapy-induced nausea and vomiting in children aged ≥6 months.
Prevention and treatment of post-operative nausea and vomiting in children aged ≥ 1 month.
Dosage/Direction for Use
Posology: Chemotherapy and radiotherapy induced nausea and vomiting: Adults: The emetogenic potential of cancer treatment varies according to the doses and combinations of chemotherapy and radiotherapy regimens used. The route of administration and dose of ondansetron should be flexible in the range of 8-32 mg a day and selected as shown as follows.
Emetogenic chemotherapy and radiotherapy: Ondansetron can be given either by rectal, oral (tablets or syrup), intravenous or intramuscular administration.
For most patients receiving emetogenic chemotherapy or radiotherapy, ondansetron 8 mg should be administered as a slow intravenous injection (in not less than 30 seconds) or intramuscular injection, immediately before treatment followed by 8 mg orally twelve hourly.
To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.
Highly emetogenic chemotherapy: For patients receiving highly emetogenic chemotherapy, e.g. high-dose cisplatin, ondansetron can be given either by oral, rectal, intravenous or intramuscular administration. Ondansetron has been shown to be equally effective in the following dose schedules over the first 24 hours of chemotherapy: A single dose of 8 mg by slow intravenous injection (in not less than 30 seconds) or intramuscular injection immediately before chemotherapy.
A dose of 8 mg by slow intravenous injection (in not less than 30 seconds) or intramuscular doses of 8 mg two to four hours apart, or by a constant infusion of 1 mg/hour for up to 24 hours.
A maximum initial intravenous dose of 16 mg diluted in 50-100 ml of saline or other compatible infusion fluid (see Special Precautions for Disposal and Other Handling under Cautions for Usage) and infused over not less than 15 minutes immediately before chemotherapy. The initial dose of ondansetron may be followed by two additional 8 mg intravenous doses (in not less than 30 seconds) or intramuscular doses four hours apart.
A single dose greater than 16 mg must not be given due to dose dependent increase of QT-prolongation risk (see Precautions, Adverse Reactions, and Pharmacology: Pharmacodynamics under Actions).
The selection of dose regimen should be determined by the severity of the emetogenic challenge.
The efficacy of ondansetron in highly emetogenic chemotherapy may be enhanced by the addition of a single intravenous dose of dexamethasone sodium phosphate, 20 mg administered prior to chemotherapy.
To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.
Paediatric population: CINV in children aged >6 months and adolescents: The dose of CINV can be calculated based on body surface area (BSA) or weight - see as follows.
In paediatric clinical studies, ondansetron was given by IV infusion diluted in 25 to 50 ml of saline or other compatible infusion fluid and infused over not less than 15 minutes.
Weight-based dosing results in higher total daily doses compared to BSA-based dosing - see Precautions and Pharmacology: Pharmacodynamics under Actions.
Ondansetron hydrochloride should be diluted in Dextrose 5% or Sodium Chloride 0.9% or other compatible infusion fluid (see Special Precautions for Disposal and Other Handling under Cautions for Usage) and infused intravenously over not less than 15 minutes.
There are no data from controlled clinical trials on the use of Ondansetron Injection in the prevention of delayed or prolonged CINV. There are no data from controlled clinical trials on the use of Ondansetron Injection for radiotherapy-induced nausea and vomiting in children.
Dosing by BSA: Ondansetron should be administered immediately before chemotherapy as a single intravenous dose of 5 mg/m2. The single intravenous dose must not exceed 8 mg.
Oral dosing can commence twelve hours later and may be continued for up to 5 days (Table 2).
The total dose over 24 hours (given as divided doses) must not exceed adult dose of 32 mg. (See Table 2.)

Click on icon to see table/diagram/image

Dosing by bodyweight: Weight-based dosing results in higher total daily doses compared to BSA-based dosing (see Precautions and Pharmacology: Pharmacodynamics under Actions).
Ondansetron should be administered immediately before chemotherapy as a single intravenous dose of 0.15 mg/Kg. The single intravenous dose must not exceed 8 mg.
Two further intravenous doses may be given in 4-hourly intervals.
Oral dosing can commence 12 hours later and may be continued for up to 5 days (Table 3).
The total dose over 24 hours (given as divided doses) must not exceed adult dose of 32 mg. (See Table 3.)

Click on icon to see table/diagram/image

Elderly: In patients 65 to 74 years of age, the dose schedule for adults can be followed. All intravenous doses should be diluted in 50-100 ml of saline or other compatible infusion fluid (see Special Precautions for Disposal and Other Handling under Cautions for Usage) and infused over 15 minutes.
In patients 75 years of age or older, the initial intravenous dose of Ondansetron should not exceed 8 mg. All intravenous doses should be diluted in 50-100 ml of saline or other compatible infusion fluid (see Special Precautions for Disposal and Other Handling under Cautions for Usage) and infused over 15 minutes.
The initial dose of 8 mg may be followed by two further intravenous doses of 8 mg, infused over 15 minutes and given no less than four hours apart. (See Pharmacology: Pharmacokinetics under Actions.)
Patients with renal impairment: No alteration of daily dosage or frequency of dosing, or route of administration is required.
Patients with hepatic impairment: Clearance of ondansetron is significantly reduced and serum half-life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8 mg should not be exceeded and therefore parenteral or oral administration is recommended.
Patients with poor sparteine/debrisoquine metabolism: The elimination half-life of ondansetron is not altered in subjects classified as poor metabolisers of sparteine and debrisoquine. Consequently in such patients repeat dosing will give drug exposure levels no different from those of the general population. No alteration of daily dosage or frequency of dosing is required.
Post-operative nausea and vomiting (PONV): Adults: For the prevention of PONV: Ondansetron can be administered orally or by intravenous or intramuscular injection.
Ondansetron may be administered as a single dose of 4 mg given by intramuscular or slow intravenous injection at induction of anaesthesia.
For treatment of established PONV: A single dose of 4 mg given by intramuscular or slow intravenous injection is recommended.
Paediatric population: PONV in children aged ≥1 month and adolescents: For prevention of PONV in paediatric patients having surgery performed under general anaesthesia, a single dose of ondansetron may be administered by slow intravenous injection (not less than 30 seconds) at a dose 0.1 mg/Kg up to a maximum of 4 mg either prior to, at or after induction of anaesthesia.
For the treatment of PONV after surgery in paediatric patients having surgery performed under general anaesthesia, a single dose of Ondansetron may be administered by slow intravenous injection (not less than 30 seconds) at a dose of 0.1mg/kg up to a maximum of 4mg.
There are no data on the use of Ondansetron in the treatment of PONV children below 2 years of age.
Elderly: There is limited experience in the use of ondansetron in the prevention and treatment of PONV in the elderly however ondansetron is well tolerated in patients over 65 years receiving chemotherapy.
Patients with renal impairment: No alteration of daily dosage or frequency of dosing, or route of administration is required.
Patients with hepatic impairment: Clearance of ondansetron is significantly reduced and serum half-life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8 mg should not be exceeded and therefore parenteral or oral administration is recommended.
Patients with poor sparteine/debrisoquine metabolism: The elimination half-life of ondansetron is not altered in subjects classified as poor metabolisers of sparteine and debrisoquine. Consequently in such patients repeat dosing will give drug exposure levels no different from those of the general population. No alteration of daily dosage or frequency of dosing are required.
Method of administration: For intravenous injection or intramuscular injection or intravenous infusion after dilution.
For instructions on dilution of the product before administration, see Special Precautions for Disposal and Other Handling under Cautions for Usage.
Prescribers intending to use ondansetron in the prevention of delayed nausea and vomiting associated with chemotherapy or radiotherapy in adults, adolescents or children should take into consideration current practice and appropriate guidelines.
Overdosage
Symptoms and Signs: There is limited experience of ondansetron overdose. In the majority of cases, symptoms were similar to those already reported in patients receiving recommended doses (see Adverse Reactions). Manifestations that have been reported include visual disturbances, severe constipation, hypotension and a vasovagal episode with transient second degree AV block. Ondansetron prolongs the QT interval in a dose-dependent fashion. ECG monitoring is recommended in cases of overdose. Cases consistent with serotonin syndrome have been reported in young children following oral overdose.
Paediatric population: Paediatric cases consistent with serotonin syndrome have been reported after inadvertent oral overdoses of ondansetron (exceeded estimated ingestion of 4 mg/kg) in infants and children aged 12 months to 2 years.
Treatment: There is no specific antidote for ondansetron, therefore in all cases of suspected overdose, symptomatic and supportive therapy should be given as appropriate.
Further management should be as clinically indicated or as recommended by the national poisons centre, where available.
The use of ipecacuanha to treat overdose with ondansetron is not recommended, as patients are unlikely to respond due to the anti-emetic action of ondansetron itself.
Contraindications
Concomitant use with apomorphine (see Interactions).
Hypersensitivity to any component of the preparation.
Special Precautions
Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5HT3 receptor antagonists.
Respiratory events should be treated symptomatically and clinicians should pay particular attention to them as precursors of hypersensitive reactions.
Ondansetron prolongs the QT interval in a dose-dependent manner (see Pharmacology: Pharmacodynamics under Actions). In addition, post-marketing cases of Torsade de Pointes have been reported in patients using ondansetron. Avoid ondansetron in patients with congenital long QT syndrome. Ondansetron should be administered with caution to patients who have or may develop prolongation of QTc, including patients with electrolyte abnormalities, congestive heart failure, bradyarrhythmias or patients taking other medicinal products that lead to QT prolongation or electrolyte abnormalities.
Hypokalemia and hypomagnesemia should be corrected prior to ondansetron administration.
There have been post-marketing reports describing patients with serotonin syndrome (including altered mental status, autonomic instability and neuromuscular abnormalities) following the concomitant use of ondansetron and other serotonergic drugs (including selective serotonin reuptake inhibitors (SSRI) and serotonin noradrenaline reuptake inhibitors (SNRIs)). If concomitant treatment with ondansetron and other serotonergic drugs is clinically warranted, appropriate observation of the patient is advised.
As ondansetron is known to increase large bowel transit time, patients with signs of subacute intestinal obstruction should be monitored following administration.
In patients with adenotonsillar surgery prevention of nausea and vomiting with ondansetron may mask occult bleeding. Therefore, such patients should be followed carefully after ondansetron.
Ondansetron injection contains 2.5 mmol (or 57.9 mg) sodium per maximum daily dose of 32 mg. To be taken into consideration by patients on a controlled sodium diet.
CINV: When calculating the dose on an mg/kg basis and administering three doses at 4-hour intervals, the total daily dose will be higher than if one single dose of 5 mg/m2 followed by an oral dose is given. The comparative efficacy of these two different dosing regimens has not been investigated in clinical trials. Cross trial comparison indicates similar efficacy for both regimens (see Pharmacology: Pharmacodynamics under Actions).
Effects on ability to drive and use machines: In psychomotor testing ondansetron does not impair performance nor cause sedation. No detrimental effects on such activities are predicted from the pharmacology of ondansetron.
Use in Children: Paediatric patients receiving ondansetron with hepatotoxic chemotherapeutic agents should be monitored closely for impaired hepatic function.
Use In Pregnancy & Lactation
Women of childbearing potential: Women of childbearing potential should consider the use of contraception.
Pregnancy: Based on human experience from epidemiological studies, ondansetron is suspected to cause orofacial malformations when administered during the first trimester of pregnancy.
In one cohort study including 1.8 million pregnancies, first trimester ondansetron use was associated with an increased risk of oral clefts (3 additional cases per 10.000 women treated; adjusted relative risk, 1.24, (95% CI 1.03-1.48)).
The available epidemiological studies on cardiac malformations show conflicting results.
Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity.
Ondansetron should not be used during the first trimester of pregnancy.
Breast-feeding: Tests have shown that ondansetron passes into the milk of lactating animals. It is therefore recommended that mothers receiving ondansetron should not breast-feed their babies.
Fertility: There is no information on the effects of ondansetron on human fertility.
Adverse Reactions
Adverse events are listed as follows by system organ class and frequency. Frequencies are defined as: very common (≥1/10), common (≥1/100 and <1/10), uncommon (≥1/1000 to <1/100), rare (≥1/10,000 and <1/1000) and very rare (<1/10,000). Very common, common and uncommon events were generally determined from clinical trial data. The incidence in placebo was taken into account. Rare and very rare events were generally determined from post-marketing spontaneous data.
The following frequencies are estimated at the standard recommended doses of ondansetron. The adverse event profiles in children and adolescents were comparable to that seen in adults.
Immune system disorders: Rare: Immediate hypersensitivity reactions sometimes severe, including anaphylaxis.
Nervous system disorders: Very common: Headache.
Uncommon: Seizures, movement disorders (including extrapyramidal reactions such as dystonic reactions, oculogyric crisis and dyskinesia)(1).
Rare: Dizziness during rapid i.v. administration.
Eye disorders: Rare: Transient visual disturbances (eg. blurred vision) predominantly during IV administration.
Very rare: Transient blindness predominantly during intravenous administration(2).
Cardiac disorders: Rare: QTc prolongation (including Torsade de Pointes).
Uncommon: Arrhythmias, chest pain with or without ST segment depression, bradycardia.
Vascular disorders: Common: Sensation of warmth or flushing.
Uncommon: Hypotension.
Respiratory, thoracic and mediastinal disorders: Uncommon: Hiccups.
Gastrointestinal disorders: Common: Constipation.
Hepatobiliary disorders: Uncommon: Asymptomatic increases in liver function tests(3).
General disorders and administration site conditions: Common: Local IV injection site reactions.
(1) Observed without definitive evidence of persistent clinical sequelae.
(2) The majority of the blindness cases reported resolved within 20 minutes. Most patients had received chemotherapeutic agents, which included cisplatin. Some cases of transient blindness were reported as cortical in origin.
(3) These events were observed commonly in patients receiving chemotherapy with cisplatin.
Drug Interactions
There is no evidence that ondansetron either induces or inhibits the metabolism of other drugs commonly co-administered with it. Specific studies have shown that there are no pharmacokinetic interactions when ondansetron is administered with alcohol, temazepan.
Ondansetron is metabolised by multiple hepatic cytochrome P-450 enzymes: CYP3A4, CYP2D6 and CYP1A2. Due to the multiplicity of metabolic enzymes capable of metabolising ondansetron, enzyme inhibition or reduced activity of one enzyme (e.g. CYP2D6 genetic deficiency) is normally compensated by other enzymes and should result in little or no significant change in overall ondansetron clearance or dose requirement.
Caution should be exercised when ondansetron is coadministered with drugs that prolong the QT interval and/or cause electrolyte abnormalities (see Precautions). Use of Ondansetron with QT prolonging drugs may result in additional QT prolongation. Concomitant use of Ondansetron with cardiotoxic drugs (e.g. anthracyclines (such as doxorubicin, daunorubicin or trastuzumab), antibiotics (such as erythromycin), antifungals (such as ketoconazole), antiarrhythmics (such as amiodarone) and beta blockers (such as atenolol or timolol) may increase the risk of arrhythmias (see Precautions).
Serotonergic Drugs (e.g. SSRIs and SNRIs): There have been post-marketing reports describing patients with serotonin syndrome (including altered mental status, autonomic instability and neuromuscular abnormalities) following the concomitant use of ondansetron and other serotonergic drugs (including SSRIs and SNRIs). (See Precautions.)
Apomorphine: Based on reports of profound hypotension and loss of consciousness when ondansetron was administered with apomorphine hydrochloride, concomitant use with apomorphine is contraindicated.
Phenytoin, Carbamazepine and Rifampicin: In patients treated with potent inducers of CYP3A4 (i.e. phenytoin, carbamazepine, and rifampicin), the oral clearance of ondansetron was increased and ondansetron blood concentrations were decreased.
Tramadol: Data from small studies indicate that ondansetron may reduce the analgesic effect of tramadol.
Caution For Usage
Special Precautions for Disposal and Other Handling: The solution must not be sterilised in an autoclave.
Ondansetron Injection should only be admixed with those infusion solutions which are recommended: Dextrose 5%; Ringer Lactate; Sodium Chloride 0.9%; Mannitol 10%.
The stability of Ondansetron Injection after dilution with the recommended infusion fluids have been demonstrated in concentrations 0.16 mg/ml and 0.64 mg/ml.
Compatibility with other drugs: The following drugs may be administered via the Y-site of Ondansetron Injection.
Cisplatin: Concentrations up to 0.48 mg/ml (e.g. 240 mg in 500 ml) administered over one to eight hours.
Carboplatin: Concentrations in the range 0.18 mg/ml to 9.9 mg/ml (e.g. 90 mg in 500 ml to 990 mg in 100 ml), administered over ten minutes to one hour.
Etoposide: Concentrations in the range 0.14 mg/ml to 0.25 mg/ml (e.g. 72 mg in 500 ml to 250 mg in 1 litre), administered over thirty minutes to one hour.
Ceftazidime: Doses in the range 250 mg to 2000 mg reconstituted with Water for Injections BP as recommended by the manufacturer (e.g. 2.5 ml for 250 mg and 10 ml for 2g ceftazidime) and given as an intravenous bolus injection over approximately five minutes.
Cyclophosphamide: Doses in the range 100 mg to 1g, reconstituted with Water for Injections BP, 5 ml per 100 mg cyclophosphamide, as recommended by the manufacturer and given as an intravenous bolus injection over approximately five minutes.
Doxorubicin: Doses in the range 10-100mg reconstituted with Water for Injections BP, 5 ml per 10 mg doxorubicin, as recommended by the manufacturer and given as an intravenous bolus injection over approximately 5 minutes.
The solution is to be visually inspected prior to use (also after dilution). Only clear solutions practically free from particles should be used.
The diluted solutions should be stored protected from light.
Any unused product or waste material should be disposed of in accordance with local requirements.
Incompatibilities: This medicinal product must not be mixed with other medicinal products except those previously mentioned in Special Precautions for Disposal and Other Handling.
Storage
Store below 30°C and protect from light.
For storage conditions of the diluted medicinal product, see Shelf life as follows.
Shelf life: Unopened: 2 years.
Injection: After first opening the medicinal product should be used immediately.
Infusion: Chemical and physical in-use stability has been demonstrated for 48 hours at 30 ± 2°C storage condition with the solutions given in Special Precautions for Disposal and Other Handling under Cautions for Usage.
From a microbiological point of view, the product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2 to 8°C, unless dilution has taken place in controlled and validated aseptic conditions.
ATC Classification
A04AA01 - ondansetron ; Belongs to the class of serotonin (5HT3) antagonists. Used for the prevention of nausea and vomiting.
Presentation/Packing
Soln for inj or infusion (amp) 4 mg/2 mL (clear colourless solution) x 5's.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Sign up for free
Already a member? Sign in