Pantoprazol Farmoz

Pantoprazol Farmoz Mechanism of Action

pantoprazole

Manufacturer:

Tecnimede

Distributor:

T-BOMA
Full Prescribing Info
Action
Pharmacotherapeutic group: Proton pump inhibitors. ATC code: A02BC02.
Pharmacology: Pharmacodynamics: Mechanism of action: Pantoprazole is a substituted benzimidazole which inhibits the secretion of hydrochloric acid in the stomach by specific blockade of the proton pumps of the parietal cells.
Pantoprazole is converted to its active form in the acidic environment in the parietal cells where it inhibits the H+, K+-ATPase enzyme, i.e. the final stage in the production of hydrochloric acid in the stomach. The inhibition is dose-dependent and affects both basal and stimulated acid secretion. In most patients, freedom from symptoms is achieved within 2 weeks. As with other proton pump inhibitors and H2 receptor inhibitors, treatment with pantoprazole causes a reduced acidity in the stomach and thereby increases gastrin in proportion to the reduction in acidity. The increase in gastrin is reversible. Since pantoprazole binds to the enzyme distal to the cell receptor level, it can inhibit hydrochloric acid secretion independently of stimulation by other substances (acetylcholine, histamine, gastrin). The effect is the same whether the product is given orally or intravenously.
Pharmacodynamic effects: The fasting gastrin values increase under pantoprazole. On short-term use, in most cases they do not exceed the upper limit of normal. During long-term treatment, gastrin levels double in most cases. An excessive increase, however, occurs only in isolated cases. As a result, a mild to moderate increase in the number of specific endocrine (ECL) cells in the stomach is observed in a minority of cases during long-term treatment (simple to adenomatoid hyperplasia). However, according to the studies conducted so far, the formation of carcinoid precursors (atypical hyperplasia) or gastric carcinoids as were found in animal experiments (see Toxicology: Preclinical safety data as follows) have not been observed in humans.
An influence of a long term treatment with pantoprazole exceeding one year cannot be completely ruled out on endocrine parameters of the thyroid according to results in animal studies.
During treatment with antisecretory medicinal products, serum gastrin increases in response to the decreased acid secretion. Also CgA increases due to decreased gastric acidity. The increased CgA level may interfere with investigations for neuroendocrine tumours.
Available published evidence suggests that proton pump inhibitors should be discontinued between 5 days and 2 weeks prior to CgA measurements. This is to allow CgA levels that might be spuriously elevated following PPI treatment to return to reference range.
Pharmacokinetics: Absorption: Pharmacokinetics does not vary after single or repeated administration. In the dose range of 10 to 80 mg, the plasma kinetics of pantoprazole are linear after both oral and intravenous administration.
The absolute bioavailability from the tablet was found to be about 77 %. Concomitant intake of food had no influence on AUC, maximum serum concentration and thus bioavailability. Only the variability of the lag-time will be increased by concomitant food intake.
20 mg: Pantoprazole is rapidly absorbed and the maximal plasma concentration is achieved even after one single 20 mg oral dose. On average at about 2.0 h - 2.5 h p.a. the maximum serum concentrations of about 1-1.5 μg/ml are achieved, and these values remain constant after multiple administration.
40 mg: Pantoprazole is rapidly absorbed and the maximal plasma concentration is achieved even after one single 40mg oral dose. On average at about 2.5 h p.a. the maximum serum concentrations of about 2 - 3 μg/ml are achieved, and thesevalues remain constant after multiple administration.
Distribution: Pantoprazole's serum protein binding is about 98 %. Volume of distribution is about 0.15 l/kg.
Biotransformation: The substance is almost exclusively metabolized in the liver. The main metabolic pathway is demethylation by CYP2C19 with subsequent sulphate conjugation, other metabolic pathway includes oxidation by CYP3A4.
Elimination: Terminal half-life is about 1 hour and clearance is about 0.1 l/h/kg. There were a few cases of subjects with delayed elimination. Because of the specific binding of pantoprazole to the proton pumps of the parietal cell the elimination half-life does not correlate with the much longer duration of action (inhibition of acid secretion).
Renal elimination represents the major route of excretion (about 80 %) for the metabolites of pantoprazole, the rest is excreted with the faeces. The main metabolite in both the serum and urine is desmethylpantoprazole which is conjugated with sulphate. The half-life of the main metabolite (about 1.5 hours) is not much longer than that of pantoprazole.
Special populations: Poor metabolisers: Approximately 3 % of the European population lack a functional CYP2C19 enzyme and are called poor metabolisers. In these individuals the metabolism of pantoprazole is probably mainly catalysed by CYP3A4. After a single-dose administration of 40 mg pantoprazole, the mean area under the plasma concentration-time curve was approximately 6 times higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were increased by about 60 %. These findings have no implications for the posology of pantoprazole.
Renal impairment: No dose reduction is recommended when pantoprazole is administered to patients with impaired renal function (including dialysis patients). As with healthy subjects, pantoprazole's half-life is short. Only very small amounts of pantoprazole are dialyzed. Although the main metabolite has a moderately delayed half-life (2 - 3h), excretion is still rapid and thus accumulation does not occur.
Hepatic impairment: 20 mg: Although for patients with liver cirrhosis (classes A and B according to Child) the half-life values increased to between 3 and 6 h and the AUC values increased by a factor of 3 - 5, the maximum serum concentration only increased slightly by a factor of 1.3 compared with healthy subjects.
40 mg: Although for patients with liver cirrhosis (classes A and B according to Child) the half-life values increased to between 7 and 9 h and the AUC values increased by a factor of 5 - 7, the maximum serum concentration only increased slightly by a factor of 1.5 compared with healthy subjects.
Older people: A slight increase in AUC and Cmax in elderly volunteers compared with younger counterparts is also not clinically relevant.
Paediatric population: Following administration of single oral doses of 20 or 40 mg pantoprazole to children aged 5 - 16 years AUC and Cmax were in the range of corresponding values in adults.
Following administration of single i.v. doses of 0.8 or 1.6 mg/kg pantoprazole to children aged 2 - 16 years there was no significant association between pantoprazole clearance and age or weight. AUC and volume of distribution were in accordance with data from adults.
Toxicology: Preclinical safety data: Non-clinical data reveal no special hazard to humans based on conventional studies of safety pharmacology, repeated dose toxicity and genotoxicity.
In the two-year carcinogenicity studies in rats neuroendocrine neoplasms were found. In addition, squamous cell papillomas were found in the fore stomach of rats. The mechanism leading to the formation of gastric carcinoids by substituted benzimidazoles has been carefully investigated and allows the conclusion that it is a secondary reaction to the massively elevated serum gastrin levels occurring in the rat during chronic high-dose treatment. In the two-year rodent studies an increased number of liver tumours was observed in rats and in female mice and was interpreted as being due to pantoprazole's high metabolic rate in the liver.
A slight increase of neoplastic changes of the thyroid was observed in the group of rats receiving the highest dose (200 mg/kg). The occurrence of these neoplasms is associated with the pantoprazole-induced changes in the breakdown of thyroxine in the rat liver. As the therapeutic dose in man is low, no harmful effects on the thyroid glands are expected.
In a peri-postnatal rat reproduction study designed to assess bone development, signs of offspring toxicity (mortality, lower mean body weight, lower mean body weight gain and reduced bone growth) were observed at exposures (Cmax) approximately 2x the human clinical exposure. By the end of the recovery phase, bone parameters were similar across groups and body weights were also trending toward reversibility after a drug-free recovery period. The increased mortality has only been reported in pre-weaning rat pups (up to 21 days age) which is estimated to correspond to infants up to the age of 2 years old. The relevance of this finding to the paediatric population is unclear. A previous peri-postnatal study in rats at slightly lower doses found no adverse effects at 3 mg/kg compared with a low dose of 5 mg/kg in this study.
Investigations revealed no evidence of impaired fertility or teratogenic effects.
Penetration of the placenta was investigated in the rat and was found to increase with advanced gestation. As a result, concentration of pantoprazole in the foetus is increased shortly before birth.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Sign up for free
Already a member? Sign in