Genotropin GoQuick

Genotropin GoQuick Mechanism of Action

somatropin

Manufacturer:

Pfizer

Distributor:

Zuellig Pharma
Full Prescribing Info
Action
Pharmacotherapeutic group: Anterior pituitary lobe hormones and analogues. ATC code: H01A C01.
Pharmacology: Pharmacodynamics: Somatropin is a potent metabolic hormone of importance for the metabolism of lipids, carbohydrates and proteins. In children with inadequate endogenous growth hormone, somatropin stimulates linear growth and increases growth rate. In adults, as well as in children, somatropin maintains a normal body composition by increasing nitrogen retention and stimulation of skeletal muscle growth, and by mobilization of body fat. Visceral adipose tissue is particularly responsive to somatropin. In addition to enhanced lipolysis, somatropin decreases the uptake of triglycerides into body fat stores. Serum concentrations of IGF-I (Insulin-like Growth Factor-I), and IGFBP3 (Insulin-like Growth Factor Binding Protein 3) are increased by somatropin. In addition, the following actions have been demonstrated: Lipid metabolism: Somatropin induces hepatic LDL cholesterol receptors, and affects the profile of serum lipids and lipoproteins. In general, administration of somatropin to growth hormone deficient patients results in reductions in serum LDL and apolipoprotein B. A reduction in serum total cholesterol may also be observed.
Carbohydrate metabolism: Somatropin increases insulin but fasting blood glucose is commonly unchanged. Children with hypopituitarism may experience fasting hypoglycaemia. This condition is reversed by somatropin.
Water and mineral metabolism: Growth hormone deficiency is associated with decreased plasma and extracellular volumes. Both are rapidly increased after treatment with somatropin. Somatropin induces the retention of sodium, potassium and phosphorus.
Bone metabolism: Somatropin stimulates the turnover of skeletal bone. Long-term administration of somatropin to growth hormone deficient patients with osteopenia results in an increase in bone mineral content and density at weight-bearing sites.
Physical capacity: Muscle strength and physical exercise capacity are improved after long-term treatment with somatropin. Somatropin also increases cardiac output, but the mechanism has yet to be clarified. A decrease in peripheral vascular resistance may contribute to this effect.
In clinical trials in short children born SGA doses of 0.033 and 0.067 mg/kg body weight per day have been used for treatment until final height. In 56 patients who were continuously treated and have reached (near) final height, the mean change from height at start of treatment was +1.90 SDS (0.033 mg/kg body weight per day) and +2.19 SDS (0.067 mg/kg body weight per day). Literature data from untreated SGA children without early spontaneous catch-up suggest a late growth of 0.5 SDS.
Pharmacokinetics: Absorption: The bioavailability of subcutaneously administered somatropin is approximately 80% in both healthy subjects and growth hormone deficient patients. A subcutaneous dose of 0.035 mg/kg of somatropin results in plasma Cmax and tmax values in the range of 13-35 ng/ml and 3-6 hours respectively.
Elimination: The mean terminal half-life of somatropin after intravenous administration in growth hormone deficient adults is about 0.4 hours. However, after subcutaneous administration, half-lives of 2-3 hours are achieved. The observed difference is likely due to slow absorption from the injection site following subcutaneous administration.
Sub-populations: The absolute bioavailability of somatropin seems to be similar in males and females following s.c. administration.
Information about the pharmacokinetics of somatropin in geriatric and pediatric populations, in different races and in patients with renal, hepatic or cardiac insufficiency is either lacking or incomplete.
Toxicology: Preclinical Safety Data: In studies regarding general toxicity, local tolerance and reproduction toxicity no clinically relevant effects have been observed.
In vitro and in vivo genotoxicity studies on gene mutations and induction of chromosome aberrations have been negative.
An increased chromosome fragility has been observed in one in-vitro study on lymphocytes taken from patients after long term treatment with somatropin and following the addition of the radiomimetic drug bleomycin. The clinical significance of this finding is unclear.
In another study, no increase in chromosomal abnormalities was found in the lymphocytes of patients who had received long term somatropin therapy.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Sign up for free
Already a member? Sign in