Xigduo XR

Xigduo XR Drug Interactions

Manufacturer:

AstraZeneca

Distributor:

Zuellig Pharma
Full Prescribing Info
Drug Interactions
Dapagliflozin: The metabolism of dapagliflozin is primarily mediated by UGT1A9-dependent glucuronide conjugation. The major metabolite, dapagliflozin 3-O-glucuronide, is not an SGLT2 inhibitor.
In in vitro studies, dapagliflozin neither inhibited CYP 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, nor induced CYP1A2, 2B6 or 3A4. Therefore, dapagliflozin is not expected to alter the metabolic clearance of coadministered drugs that are metabolised by these enzymes and drugs which inhibit or induce these enzymes are not expected to alter the metabolic clearance of dapagliflozin. Dapagliflozin is a weak substrate of the P-glycoprotein (P-gp) active transporter and dapagliflozin 3-O-glucuronide is a substrate for the OAT3 active transporter. Dapagliflozin or dapagliflozin 3-O-glucuronide did not meaningfully inhibit P-gp, OCT2, OAT1, or OAT3 active transporters. Overall, dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are P-gp, OCT2, OAT1, or OAT3 substrates.
In interaction studies conducted in healthy subjects, using mainly single dose design, the pharmacokinetics of dapagliflozin were not altered by metformin (an hOCT-1 and hOCT-2 substrate), pioglitazone (a CYP2C8 [major] and CYP3A4 [minor] substrate), sitagliptin (an hOAT-3 substrate and P-glycoprotein substrate), glimepiride (a CYP2C9 substrate), voglibose, hydrochlorothiazide, bumetanide, valsartan, or simvastatin (a CYP3A4 substrate). Therefore, meaningful interaction of dapagliflozin with other substrates of hOCT-1, hOCT-2, hOAT-3, P-gp, CYP2C8, CYP2C9, CYP3A4, and other α-glucosidase inhibitors would not be expected.
Dapagliflozin also did not alter the pharmacokinetics of metformin, pioglitazone, sitagliptin, glimepiride, hydrochlorothiazide, bumetanide, valsartan, simvastatin, digoxin (a P-gp substrate), or warfarin (S-warfarin is a CYP2C substrate). Therefore, dapagliflozin is not a clinical meaningful inhibitor of hOCT-1, hOCT-2, hOAT-3, P-gp transporter pathway, and CYP2C8, CYP2C9, CYP2C19 and CYP3A4 mediated metabolism.
Following coadministration of dapagliflozin with rifampicin (an inducer of various active transporters and drug-metabolizing enzymes) or mefenamic acid (an inhibitor of UGT1A9), a 22% decrease and a 51% increase, respectively, in dapagliflozin systemic exposure was seen, but with no clinically meaningful effect on 24-hour urinary glucose excretion in either case. No dose adjustment of dapagliflozin is recommended when dapagliflozin is coadministered with either rifampicin or mefenamic acid.
Metformin hydrochloride: Cationic drugs: Cationic drugs (e.g. amiloride, digoxin, morphine, procainamide, quinidine, quinine, ranitidine, triamterene, trimethoprim, or vancomycin) that are eliminated by renal tubular secretion theoretically have the potential for interaction with metformin by competing for common renal tubular transport systems. Such interaction between metformin and oral cimetidine has been observed in normal healthy volunteers in both single- and multiple-dose, metformin-cimetidine drug interaction studies, with a 60% increase in peak metformin plasma and whole blood concentrations and a 40% increase in plasma and whole blood metformin AUC. There was no change in elimination half-life in the single-dose study. Metformin had no effect on cimetidine pharmacokinetics. Although such interactions remain theoretical (except for cimetidine), careful patient monitoring and dose adjustment of metformin and/or the interfering drug is recommended in patients who are taking cationic medications that are excreted via the proximal renal tubular secretory system.
Glibenclamide: In a single-dose interaction study in patients with type 2 diabetes, coadministration of metformin and glibenclamide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glibenclamide AUC and maximum concentration (Cmax) were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glibenclamide blood levels and pharmacodynamic effects makes the clinical significance of this interaction uncertain.
Frusemide: A single-dose, metformin-frusemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by coadministration. Frusemide increased the metformin plasma and blood Cmax by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the Cmax and AUC of frusemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in frusemide renal clearance. No information is available about the interaction of metformin and frusemide when coadministered chronically.
Nifedipine: A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that coadministration of nifedipine increased plasma metformin Cmax and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. Tmax and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.
Use with other drugs: Certain drugs tend to produce hyperglycaemia and may lead to loss of glycaemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving metformin, the patient should be closely observed for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, the patient should be observed closely for hypoglycaemia.
In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when coadministered in single-dose interaction studies.
Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.
Other interactions: The effects of smoking, diet, herbal products, and alcohol use on the pharmacokinetics of XIGDUO XR have not been specifically studied.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Sign up for free
Already a member? Sign in