Ziglip-M

Ziglip-M Mechanism of Action

metformin + sitagliptin

Manufacturer:

Zifam Pinnacle

Distributor:

Pinnacle House
Full Prescribing Info
Action
Pharmacotherapeutic Group: Oral hypoglycemic. ATC Code: A10BD07.
Pharmacology: Sitagliptin is a highly selective DPP-4 inhibitor, which is believed to exert its actions in patients with type 2 diabetes by slowing the inactivation of incretin hormones, thereby increasing the concentration and prolonging the action of these hormones. lncretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are released by the intestine throughout the day, and levels are increased in response to a meal. These hormones are rapidly inactivated by the enzyme, DPP-4. The incretins are part of an endogenous system involved in the physiologic regulation of glucose homeostasis.
When blood glucose concentrations are normal or elevated, GLP-1 and GIP increase insulin synthesis and release from pancreatic β-cells by intracellular signaling pathways involving cyclic AMP. GLP-1 also lowers glucagon secretion from pancreatic α-cells, leading to reduced hepatic glucose production. By increasing and prolonging active incretin levels, sitagliptin increases insulin release and decreases glucagon levels in the circulation in a glucose-dependent manner. These changes lead to a decrease in hemoglobin A1c (HbA1c) levels, as well as a lower fasting and postprandial glucose concentration. Sitagliptin demonstrates selectivity for DPP-4 and does not inhibit DPP-8 or DPP-9 activity in vitro at concentrations approximating those from therapeutic doses.
Metformin is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not produce hypoglycaemia.
Metformin may act via 3 mechanisms: 1) By reduction of hepatic glucose production by inhibiting gluconeogenesis and glycogenolysis. 2) In muscle, by modestly increasing insulin sensitivity, improving peripheral glucose uptake and utilization. 3) By delaying intestinal glucose absorption.
Metformin stimulates intracellular glycogen synthesis by acting on glycogen synthase. Metformin increases the transport capacity of specific types of membrane glucose transporters (GLUT-1 and GLUT-4).
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Sign up for free
Already a member? Sign in