Advagraf

Advagraf Drug Interactions

tacrolimus

Manufacturer:

Astellas

Distributor:

Zuellig
Full Prescribing Info
Drug Interactions
Systemically available tacrolimus is metabolised by hepatic CYP3A4. There is also evidence of gastrointestinal metabolism by CYP3A4 in the intestinal wall. Concomitant use of substances known to inhibit or induce CYP3A4 may affect the metabolism of tacrolimus and thereby increase or decrease tacrolimus blood levels.
It is strongly recommended to closely monitor tacrolimus blood levels, as well as, QT prolongation (with ECG), renal function and other side effects, whenever substances which have the potential to alter CYP3A4 metabolism or otherwise influence tacrolimus blood levels are used concomitantly, and to interrupt or adjust the tacrolimus dose as appropriate in order to maintain similar tacrolimus exposure (see Dosage & Administration and Precautions).
CYP3A4 inhibitors potentially leading to increased tacrolimus blood levels: Clinically the following substances have been shown to increase tacrolimus blood levels: Strong interactions have been observed with antifungal agents such as ketoconazole, fluconazole, itraconazole and voriconazole, the macrolide antibiotic erythromycin or HIV protease inhibitors (e.g. ritonavir, nelfinavir, saquinavir) or HCV protease inhibitors (e.g. telaprevir, boceprevir) or the CMV antiviral letermovir. Concomitant use of these substances may require decreased tacrolimus doses in nearly all patients. Pharmacokinetics studies have indicated that the increase in blood levels is mainly a result of increase in oral bioavailability of tacrolimus owing to the inhibition of gastrointestinal metabolism. Effect on hepatic clearance is less pronounced.
Weaker interactions have been observed with clotrimazole, clarithromycin, josamycin, nifedipine, nicardipine, diltiazem, verapamil, amiodarone, danazol, ethinylestradiol, omeprazole, nefazodone and (Chinese) herbal remedies containing extracts of Schisandra sphenanthera.
In vitro the following substances have been shown to be potential inhibitors of tacrolimus metabolism: bromocriptine, cortisone, dapsone, ergotamine, gestodene, lidocaine, mephenytoin, miconazole, midazolam, nilvadipine, norethindrone, quinidine, tamoxifen, (triacetyl)oleandomycin.
Grapefruit juice has been reported to increase the blood level of tacrolimus and should therefore be avoided.
Lansoprazol and ciclosporin may potentially inhibit CYP3A4-mediated metabolism of tacrolimus and thereby increase tacrolimus whole blood concentrations.
Other interactions potentially leading to increased tacrolimus blood levels: Tacrolimus is extensively bound to plasma proteins. Possible interactions with other active substances known to have high affinity for plasma proteins should be considered (e.g., NSAIDs, oral anticoagulants, or oral antidiabetics).
Other potential interactions that may increase systemic exposure of tacrolimus include prokinetic agents (such as metoclopramide and cisapride), cimetidine and magnesium-aluminium-hydroxide.
CYP3A4 inducers potentially leading to decreased tacrolimus blood levels: Clinically the following substances have been shown to decrease tacrolimus blood levels: Strong interactions have been observed with rifampicin, phenytoin, St. John's Wort (Hypericum perforatum) which may require increased tacrolimus doses in almost all patients. Clinically significant interactions have also been observed with phenobarbital. Maintenance doses of corticosteroids have been shown to reduce tacrolimus blood levels.
High dose prednisolone or methylprednisolone administered for the treatment of acute rejection have the potential to increase or decrease tacrolimus blood levels.
Carbamazepine, metamizole and isoniazid have the potential to decrease tacrolimus concentrations.
Effect of tacrolimus on the metabolism of other medicinal products: Tacrolimus is a known CYP3A4 inhibitor; thus concomitant use of tacrolimus with medicinal products known to be metabolised by CYP3A4 may affect the metabolism of such medicinal products.
The half-life of ciclosporin is prolonged when tacrolimus is given concomitantly. In addition, synergistic/additive nephrotoxic effects can occur. For these reasons, the combined administration of ciclosporin and tacrolimus is not recommended and care should be taken when administering tacrolimus to patients who have previously received ciclosporin (see Dosage & Administration and Precautions).
Tacrolimus has been shown to increase the blood level of phenytoin.
As tacrolimus may reduce the clearance of steroid-based contraceptives leading to increased hormone exposure, particular care should be exercised when deciding upon contraceptive measures.
Limited knowledge of interactions between tacrolimus and statins is available. Clinical data suggest that the pharmacokinetics of statins are largely unaltered by the co-administration of tacrolimus.
Animal data have shown that tacrolimus could potentially decrease the clearance and increase the half-life of pentobarbital and antipyrine.
Other interactions leading to clinically detrimental effects: Concurrent use of tacrolimus with medicinal products known to have nephrotoxic or neurotoxic effects may increase these effects (e.g., aminoglycosides, gyrase inhibitors, vancomycin, cotrimoxazole, NSAIDs, ganciclovir or aciclovir).
Enhanced nephrotoxicity has been observed following the administration of amphotericin B and ibuprofen in conjunction with tacrolimus.
As tacrolimus treatment may be associated with hyperkalaemia, or may increase pre-existing hyperkalaemia, high potassium intake, or potassium-sparing diuretics (e.g. amiloride, triamterene, or spironolactone) should be avoided (see Precautions).
Immunosuppressants may affect the response to vaccination and vaccination during treatment with tacrolimus may be less effective. The use of live attenuated vaccines should be avoided (see Precautions).
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Sign up for free
Already a member? Sign in